If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-16384=0
a = 1; b = 4; c = -16384;
Δ = b2-4ac
Δ = 42-4·1·(-16384)
Δ = 65552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{65552}=\sqrt{16*4097}=\sqrt{16}*\sqrt{4097}=4\sqrt{4097}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{4097}}{2*1}=\frac{-4-4\sqrt{4097}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{4097}}{2*1}=\frac{-4+4\sqrt{4097}}{2} $
| 180x+16000=2x^2+660x | | 16^2=40x-72 | | 2x^2+75x-3125=0 | | -15p-1=-14p-18 | | 3x+0=-16 | | 12d+13d-14=0 | | 16g+12g+-g+-19g+9g=-17 | | 6x=4+28 | | 4x^2=41x-45 | | -0.2x^2+176x+21900=0 | | x2=8.1x-4.5 | | 10h+10=8h | | 2x+3 15=9 10 | | 5y-4=9 | | -7(2x-2)+5(3x-7)-2=4-5 | | 4x=0.24 | | -2(4x-1+3(3x-5)-4=2-8 | | 2g-2g+g=11 | | 8x-8x+2x=10 | | x^2-7√7x+70=0 | | 10=3/4x+8 | | 2(-13+x)=2(9x-11) | | 7(b+8)=30 | | C=0.001x3+8x+54 | | 50x+150=75x-200 | | 29+30=87x+81-44x | | 3a+3a+6-1=a+5a+7-9 | | 4x+100=6x-10 | | 9y+3y+7+2=9y+y+4+7 | | -2x+48=8x-12 | | 3y-7=8y-23 | | 3/p+1/5(40-p)=0 |